

Environment Testing TestAmerica

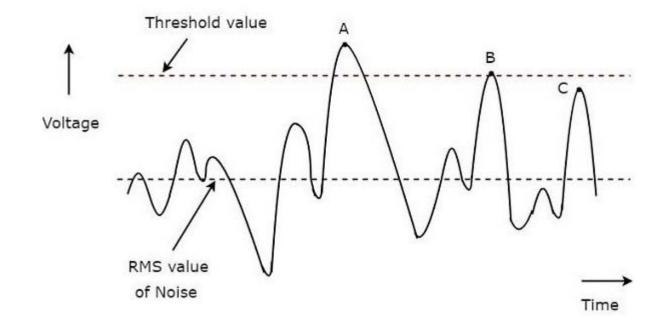
Calibration – Past, Present and Future

Richard Burrows

www.TestAmericaInc.com

I gave a similar presentation 2 years ago

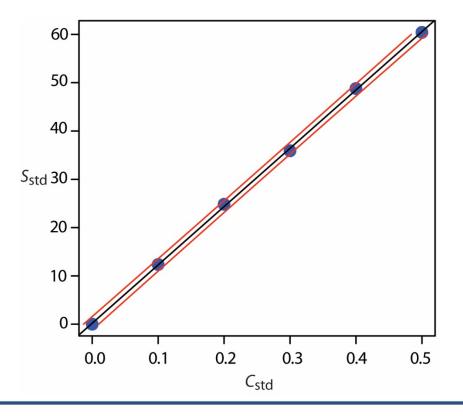
This issue adversely affects almost every method we perform


It leads to acceptance of poor data, and rejection of good data

We have not made much progress in the last two years

Most important property of an analytical method

A detectable response that is proportional to the quantity of analyte



Second most important property of an analytical method

A calibration:

The ability to relate the size of the response to the quantity of analyte present

Once we have created a calibration, we need to be able to evaluate the quality of the calibration.

The measure that we use should:

Guide us towards selecting the best type of calibration for the data Linear, curvilinear, weighted, unweighted, forced zero, etc.

Tell us how effective the selected calibration fit is at translating the instrument response to the amount of analyte

Type of calibration typically used in environmental analysis include:

- Linear
- Quadratic (curvilinear)
- Unweighted
- Weighted by the reciprocal of concentration or concentration squared
- Average response factor (a special case of weighted and forced through zero)

What if we were routinely using a measure for calibration quality that:

- Guided us towards using the worst possible type of calibration fit (one that creates large errors in the amount of analyte)
- For the same data set, told us that curve fits with very large errors were good, and curve fits with much smaller errors were bad

That would not be a good thing, right?

Unfortunately, that is exactly what we do.

For most of our methods!!

The measures are the correlation coefficient and the coefficient of determination

- r = Correlation coefficient
- r² = Coefficient of determination

Not just environmental analysis – pervasive problem in analytical chemistry in general

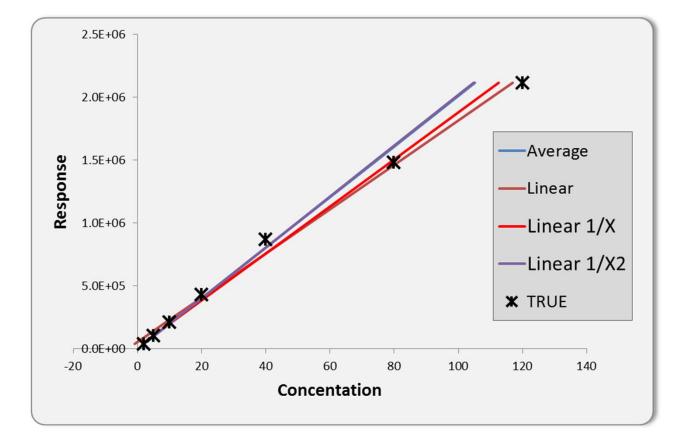
Amount	Response	
2.00	38345	
5.00	104587	
10.00	211363	
20.00	432675	
40.00	871485	
80.00	1483247	
120.00	2084890	

Acceptance criteria

•Criteria

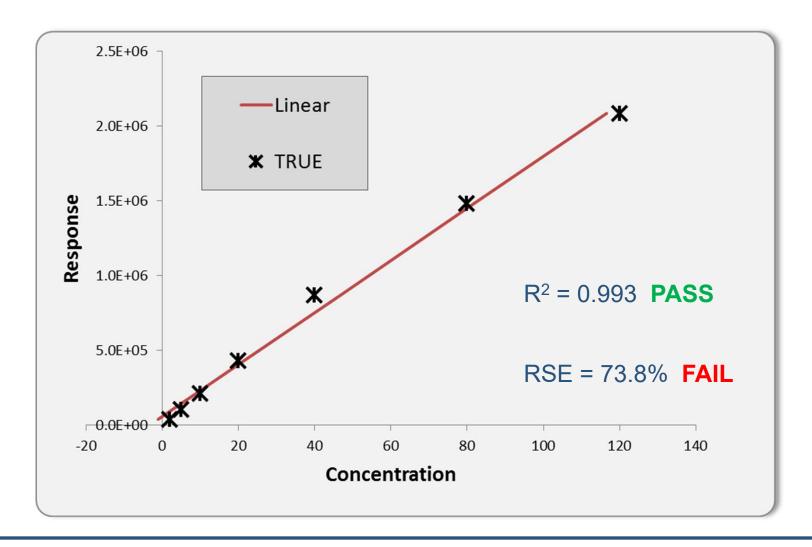
Coeff. Determination = r² > 0.990

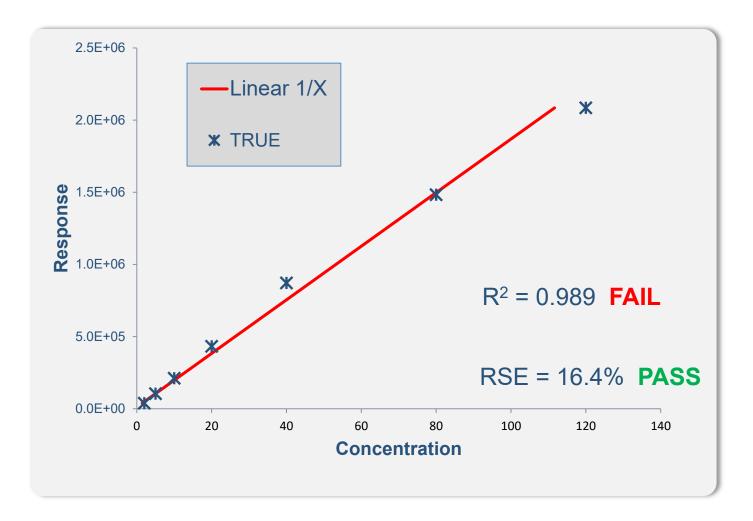
And


■ RSE <u><</u> 20%

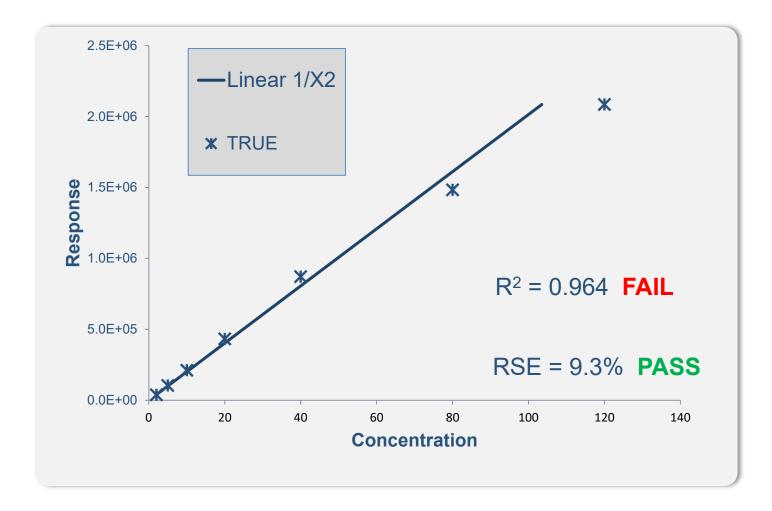
Or

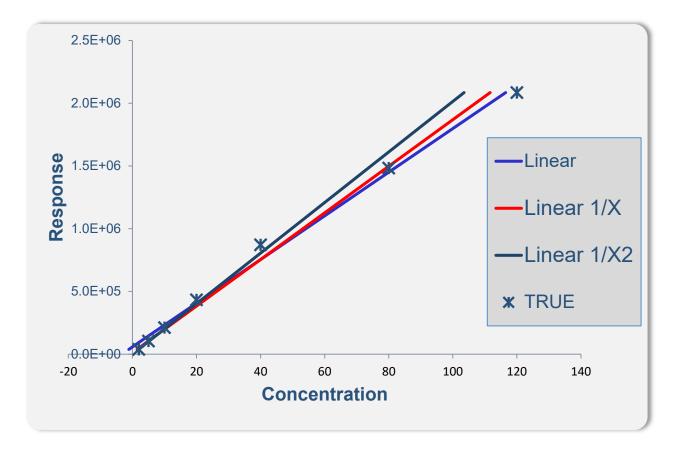
- Mid point relative error < 20%</p>
- Low point relative error < 30%</p>


Plot different curve fits

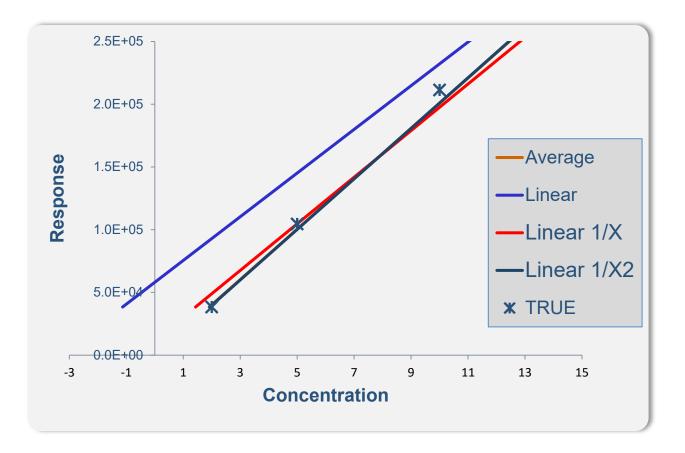


Linear regression calibration

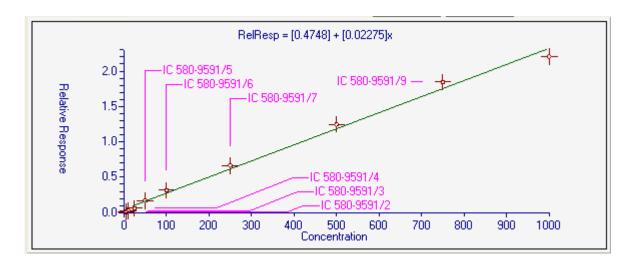




	Average	1/X	1/X ²	Unweighted
2	-4.52%	-28.52%	-3.50%	-156.7%
5	4.17%	-0.07%	4.35%	-46.54%
10	5.26%	7.46%	5.17%	-11.91%
20	7.74%	13.32%	7.50%	7.64%
40	8.50%	15.73%	8.19%	16.86%
80	-7.67%	-0.95%	-7.95%	2.38%
120	-13.48%	-6.97%	-13.75%	-2.94%
RSE	8.5%	16.4%	9.3%	73.8%
R ²	0.983	0.989	0.964	0.993


Curve fit plots

Plot at the low end

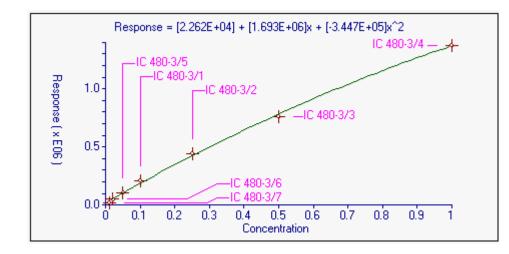

Correlation coefficient gets better

Curve quality gets worse

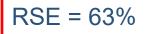
Environment Testing TestAmerica

Calibration issues

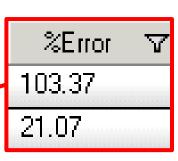
r= 0.997, r² = 0.994


RSE = 179%

	Calibration Standard Levels							
Le	vel 🛛 🖓	Used 🛛	Amount 🛆 🔽	Area	Y	ISArea 🖓	%Error 7	V
IC 580	959172		5	1348		618332	421.63	1
IC 580	-9591/3	 Image: A set of the set of the	10	3250		647316	198.43	I
IC 580	-959174	Image: A start of the start	25	7697		646400	78.87	
IC 580	-9591/5	Image: A start of the start	50	23729		700099	7.13	
IC 580	-9591/6	Image: A start of the start	100	47131		748204	17.47	_
IC 580	-9591/7	Image: A start of the start	250	111297		833662	8.93	
IC 580	-9591/8	Image: A start of the start	500	229185		917698	5.52	
IC 580	-9591/9	Image: A start of the start	750	371628		1005615	5.43	
IC 580	9591/10	 Image: A set of the set of the	1000	499631		1131444	5.11	



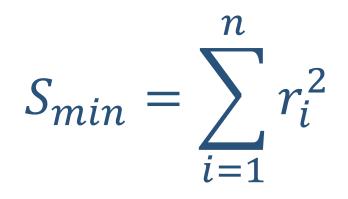
Dalapon



 $r^2 = 0.999$

	Level	V	Used V	Amoun 🗸	Area 🖓	%Error 🗸
	IC 480-3/7		V	0.01	22047	103.37
	IC 480-3/6		V	0.02	49262	21.07
	IC 480-3/5		V	0.05	106980	0.68
•	IC 480-3/1		•	0.1	211249	14.05
	IC 480-3/2		▼	0.25	442363	4.74
	IC 480-3/3		▼	0.5	762496	3.04
	IC 480-3/4		▼	1	1374873	0.38

ICPMS, 51V


	Blank offset	Unweighted	1/X	1/X ²	1/SD ²
1	1.23	-0.45	0.957	1.00	1.07
10	10.3	8.66	10.0	9.94	10.1
100	104.5	102.9	104.1	102	103.9
2000	1999	2000	1996	1963	1991
R	1.0000	1.0000	1.0000	1.0000	1.0000

Regression

In an **unweighted** regression, we are minimizing the sum of the squares of the **absolute** values of the residuals

Environment Testing TestAmerica

$$r_{xy} = rac{n\sum x_iy_i - \sum x_i\sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2}}\, \sqrt{n\sum y_i^2 - (\sum y_i)^2}\,.$$

The main takeaway is that the correlation coefficient is evaluating how far away from the expectation each point is – in **absolute** terms

Environment Testing TestAmerica

Absolute or Relative?

Absolute error = 5					
True	1	5	20	50	100
Measured	-4,6	0,9	16 , 25	45 , 55	95 , 105

Relative error = 10%					
True	1	5	20	50	100
Measured	0.9 , 1.1	4.5 , 5.5	18 , 22	45 , 55	90 , 110

Unweighted regression minimizes the absolute error Correlation coefficient evaluates absolute variance

Which is NOT what we want!

Environment Testing TestAmerica A few questions

What is this RSE?

% RSE = 100 ×
$$\sqrt{\sum_{i=1}^{n} \left[\frac{x'_{i} - x_{i}}{x_{i}}\right]^{2} / (n - p)}$$

For Average Response Factor, RSE = RSD

	Average	1/X	1/X ²	Unweighted
2	-4.52%	-28.52%	-3.50%	-156.7%
5	4.17%	-0.07%	4.35%	-46.54%
10	5.26%	7.46%	5.17%	-11.91%
20	7.74%	13.32%	7.50%	7.64%
40	8.50%	15.73%	8.19%	16.86%
80	-7.67%	-0.95%	-7.95%	2.38%
120	-13.48%	-6.97%	-13.75%	-2.94%
RSE	8.5%	16.4%	9.3%	73.8%
R ²	0.983	0.989	0.964	0.993

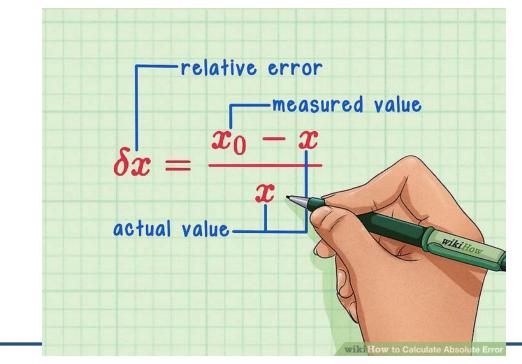
Progress so far...

- •RSE added to Method 8000 and 600 series
- RSE added to TNI standards
- •Relative error added to 8000 series
- •Relative Error added to TNI standards

- •RSE adoption should be relatively straightforward because:
 - For the average RF calibration RSE = RSD
 - RSE essentially just allows RSD to be applied to all types of curves, instead of just Average RF
- •However:
- Virtually unused
 - May increase after 2016 standards are adopted
 - Needs to be incorporated into major manufacturer instrument software
 - Needs removal of correlation coefficient option??
 - Needs champions

IUPAC, 1998 Guidelines for Calibration in Analytical Chemistry

The correlation coefficient, which is a measure of two random variables, has no meaning in calibration because the values x are not random quantities


For most applications, and calibration curves in particular, the correlation coefficient must be regarded as a relic of the past

 Meier and Zund, Statistical Methods in Analytical Chemistry, 2000

Measuring relative error

•Do we already have measures of relative error in EPA methods?

Environment Testing TestAmerica

eurofins

- •Linear or quadratic regression may be used
- •Calibration points < MRL must calculate within 50% of true value (Relative Error)
- •Calibration points above the MRL must calculate within 30% of true value (Relative Error)
- •No correlation coefficient or coefficient of determination!

Alternative to RSE is measuring relative error at each point, or at key points (for example at the mid point and the low point

Using relative error of each point is less desirable than RSE, but it is good:

- Measures what is important, relative error
- Consistent with TNI standards
- Consistent for different curve fits

Average curve fit – RSD (Relative Error)

Linear or quadratic regression

- Has RSE option (Relative Error)
- Recalc at low point 50%, other points 30% (Should) (Relative Error)
- Consistent with method 524
- Unfortunately includes correlation coefficient and coefficient of determination

Just drop r and r²!!

Average curve fit – RSD

Linear or quadratic regression

- Has RSE option (Relative Error)
- No recalc
- Unfortunately includes coefficient of determination

Just drop r² and add Recalc!

•Calibration is the most critical part of an analytical method

•We must have good measures of calibration quality

•Therefore, we have to get rid of the correlation coefficient and coefficient of determination

It will not be easy.....